# [NOIP2023] 三值逻辑
## 题目描述
小 L 今天学习了 Kleene 三值逻辑。
在三值逻辑中,一个变量的值可能为:真($\mathit{True}$,简写作 $\mathit{T}$)、假($\mathit{False}$,简写作 $\mathit{F}$)或未确定($\mathit{Unknown}$,简写作 $\mathit{U}$)。
在三值逻辑上也可以定义逻辑运算。由于小 L 学习进度很慢,只掌握了逻辑非运算 $\lnot$,其运算法则为:
$$\lnot \mathit{T} = \mathit{F}, \lnot \mathit{F} = \mathit{T}, \lnot\mathit{U} = \mathit{U}.$$
现在小 L 有 $n$ 个三值逻辑变量 $x_1,\cdots, x_n$。小 L 想进行一些有趣的尝试,于是他写下了 $m$ 条语句。语句有以下三种类型,其中 $\leftarrow$ 表示赋值:
1. $x_i \leftarrow v$,其中 $v$ 为 $\mathit{T}, \mathit{F}, \mathit{U}$ 的一种;
2. $x_i \leftarrow x_j$;
3. $x_i \leftarrow \lnot x_j$。
一开始,小 L 会给这些变量赋初值,然后按顺序运行这 $m$ 条语句。
小 L 希望执行了所有语句后,所有变量的最终值与初值都相等。在此前提下,小 L 希望初值中 $\mathit{Unknown}$ 的变量尽可能少。
在本题中,你需要帮助小 L 找到 $\mathit{Unknown}$ 变量个数最少的赋初值方案,使得执行了所有语句后所有变量的最终值和初始值相等。小 L 保证,至少对于本题的所有测试用例,这样的赋初值方案都必然是存在的。